Каким знаком можно обозначить историю

Символы и обозначения

каким знаком можно обозначить историю

Однако символы в ходе своей тысячелетней истории могли Значение: Пятиконечная звезда считается знаком защиты. Значение: Слово « свастика» можно перевести с санскрита как приветствие и пожелание удачи. Так, бубны обозначили деньги как металлические погремушки. В этих хозяйствах можно приобрести качественные продукты питания, которые Церкви с особой архитектурой и занимательной историей. Товарным знаком «Латвийский Экопродукт» имеют право пользоваться только. В Древнем Риме этот знак был символом неприкосновенности, древних культовых сооружениях можно найти эти скрещенные «полумесяцы». Но история свастики начинается еще 10 тысяч лет назад. По еще одной версии это графическое обозначение пути и геркулесовых столбов.

Вот первые четыре Российских дорожных знака круглой формы: Подобные дорожные знаки использовались до конца года. Вот так они выглядели в то время: И только в году количество знаков было увеличено до х. Большинство дорожных знаков применяемых в нашей стране с года получили привычные для нас сегодня цвета и формы.

Кроме этого, в году дорожные знаки в России получили различные категории: Однако, со своей стороны по части дорожных знаков наша страна в полном объеме данный протокол не подписала, так как власти посчитали, что европейские дорожные знаки водителей в нашей стране будут только путать, поскольку люди к тому времени уже привыкли к собственным дорожным знакам и в СССР они применяются долгое время.

В итоге получилось, что в нашей стране даже после окончания отечественной войны по-прежнему еще использовались дорожные знаки образца х годов. Кстати для справки, система знаков утвержденных в Женеве в те годы не была поддержана и самими США, а также Великобританией, Китаем и Японией, где тоже действовали свои собственные дорожные знаки и которые кардинально отличались от европейских знаков.

Например, в те годы большинство дорожных знаков в США имели текстовые обозначения. В результате чего, начиная с года в нашей стране начинает официально действовать 78 дорожных знаков. Большинство дорожных знаков образца года получают более привычный для нас на сегодня внешний вид: Обратите внимание на фото выше.

Слева вы можете увидеть дорожный знак круглой формы, внутри его можно увидеть красный треугольник с надписью "Стоп". Но, как вы можете убедиться, этот знак мало чего общего имеет с современным восьмиугольным знаком и англоязычной надписью внутри " STOP Когда тогда в нашей стране начал использоваться восьмиугольный красный дорожный англоязычный знак "STOP"?

Таким образом, в те годы знак с англоязычной надписью "STOP" стал единственным текстовым знаком в международной системе. Этот ГОСТ включал в себя дорожных знаков большинство из которых в те годы были уже легко узнаваемы водителями. Так что можно сказать, что Венская конвенция о безопасности дорожного движения стала главным заключительным этапом международной эволюции дорожных знаков, а также и стандартизации единых правил дорожного движения по всему миру.

Почему цвет дорожных знаков "STOP" красный? На этот вопрос существует простой ответ. Согласитесь, что красный цвет выделяется из всех каким-то особенным образом? Так же красный свет имеет свойство не смешиваться с другими объектами на переднем плане.

Самое интересное то, что красный цвет хорошо воспринимают на дороге даже те люди, которые имеют проблемы со зрением. Благодаря интересным свойствам красного цвета восьмиугольный знак "Стоп" данного цвета виден издалека. Его может быть видно по прямой на расстоянии до 1-го км. Кроме этого, как мы вам уже рассказывали в статье о красных стоп-сигналах, красный цвет нашим мозгом на подсознательном уровне ассоциируется с цветом крови, что вызывает у нас чувство опасности.

А согласно проведенным исследованиям красный цвет влияет еще и на послушание человека. Чтобы это доказать его проводили в году, оно наглядно показало, что красный цвет может влиять на поведение не только животных и приматов, но также и на человека. Так вот, во время эксперимента, два человека-экспериментатора мужчина и женщина вошли в клетку в которой проживала колония обезьян.

Государственный знак качества СССР

Затем оба экспериментатора опустились на колени и поставили перед обезьянами два пластиковых подноса. Далее, эти два человека достали из своих рюкзаков по кусочку яблока и стали держать их на уровне груди, чтобы каждая обезьяна видела яблоки. Затем каждый из исследователей положил свой кусок яблока на поднос и одновременно встав с коленей сделали два шага. Далее, обезьяны, понимающие, что люди находятся на безопасном расстоянии от подноса стали хватать эти кусочки яблок и убегать, а затем съедали.

Но самое поразительное было не. Во время эксперимента исследователи заходившие в клетку к обезьянам каждый раз меняли свою одежду: Чтобы эксперимент был полный, исследование проводилось и проверялось как на самках, так и на самцах.

Результаты эксперимента были поразительными. Во-первых, обезьяны не обращали внимание на пол экспериментатора. Также, обезьяны не обращали внимание на зеленые и синие кепки и футболки исследователей. Но удивительным стало другое. В результате подобных опасений большинство обезьян участвующих в исследованиях, предпочли украсть яблоко с подноса того человека, который не был одет в красную футболку или не носил красную кепку. Еще в истории науки есть одно интересное исследование, во время которого ученые провели тщательный анализ результатов Олимпийских игр года.

Так вот, ученые обнаружили, что на этих Олимпийских играх красный цвет среди спортсменов победителей был также доминирующим. Согласно исследованиям, спортсмены одетые в красную форму становились победителями чаще, чем например спортсмены находившиеся в синей спортивной форме. Особенно это доминирование спортсменов в красной форме было отмечено в рукопашных видах спорта, в таких например, как борьба.

Именно поэтому люди не случайно знают, что красный цвет означает "нет", "запрет", "опасность" и. Самое интересное, что в обоих мирах человеческом мире и мире обезьян цвет имеет очень важное значение. Например, цвет помогал древним людям, помогал и помогает сегодня обезьянам определять по реакции других своих сородичей, съедобна ли еда.

Допустим, если какая-нибудь обезьяна съест несъедобную еду, то ее лицо в скором времени покраснеет, что будет означать сигналом для других приматов, эту пищу есть.

Таким образом по мнению ученых цвет имеет более глубокое и широкое влияние не только на обезьян, но и на самих людей. Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов.

Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках.

И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в года до н. Панини удивительно подробно и ясно расписал грамматику для санскрита.

Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Науракоторая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному.

Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в году.

Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: Но не о том, что же это всё значило для обозначений выражений.

каким знаком можно обозначить историю

Некоторая определённость появилась в е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в е.

Бакус применил её к компьютерным языкам: И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками.

Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности.

Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны.

Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык.

каким знаком можно обозначить историю

И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом. Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией.

И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам вон пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом.

Часть с выводом данных была довольно простой: Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме.

Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: Итак, допустим, у вас есть подобное математическое выражение.

Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике.

Самые влиятельные символы в истории человечества | Русская семерка

И я решил исследовать. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали.

И я обнаружил весьма любопытную вещь: Таким образом, можно утверждать: Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений.

Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать.

И многие программы действительно так и работают. Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача.

Но это то, что мы хотим реализовать. Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом.

Но тогда вы не получите знакомую математическую нотацию. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i". Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах.

И что с этим делать? И вот ключевая идея: Можно было бы подумать: Ну, это бы точно сбивало с толку. Итак, значит, должно быть два "i".

каким знаком можно обозначить историю

Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием.

Так, к примеру, прописная R могла бы быть переменной в математических записях. А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы.

Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле? Что, если это параметр в подынтегральном выражении? Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием. И получается хорошо определённый синтаксис. Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным.

Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой. И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами.

К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём. Мы долго думали над. И мы придумали несколько хороших и общих схем для реализации подобного. Одна из них — ввод таких вещей, как степени, в качестве верхних индексов.

Вот почему знак "Стоп" красного цвета

Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с. И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено.

Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные Inто есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее. Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать.

Однако, вероятно, более важно то, что мы внедрили поддержку двумерных структур.

Знак параграфа — Википедия

Так, помимо префиксных операторов, имеется поддержка оверфиксных операторов и прочего. Если вы посмотрите на это выражение, вы можете сказать, что оно не совсем похоже на традиционную математическую нотацию. Но оно очень близко. И оно несомненно содержит все особенности структуры и форм записи обычной математической нотации. И важная вещь заключается в том, что ни у кого, владеющим обычной математической нотацией, не возникнет трудностей в интерпретации этого выражения.

Конечно, есть некоторые косметические отличия от того, что можно было бы увидеть в обычном учебнике по математике. К примеру, как записываются тригонометрические функции, ну и тому подобное. Однако я готов поспорить, что StandardForm в Mathematica лучше и яснее для представления этого выражения. И в книге, которую я писал много лет о научном проекте, которым я занимался, для представления чего бы то ни было я использовал только StandardForm.

Однако если нужно полное соответствие с обычными учебниками, то понадобится уже что-то другое. И вот другая важная идея, реализованная в Mathematica 3: Любое выражение я всегда могу сконвертировать в TraditionalForm. И в действительности TraditionalForm всегда содержит достаточно информации, чтобы быть однозначно сконвертированным обратно в StandardForm.

Но TraditionalForm выглядит практически как обычные математические обозначения. Со всеми этими довольно странными вещами в традиционной математической нотации, как запись синус в квадрате x вместо синус x в квадрате и так далее.

Так что насчёт ввода TraditionalForm? Вы могли заметить пунктир справа от ячейки [в других выводах ячейки были скрыты для упрощения картинок — прим. Они означают, что есть какой-то опасный момент. Однако давайте попробуем кое-что отредактировать.

Мы прекрасно можем всё редактировать. Давайте посмотрим, что случится, если мы попытаемся это вычислить. В любом случае, всё равно продолжим. Что ж, система поняла, что мы хотим. Фактически, у нас есть несколько сотен эвристических правил интерпретации выражений в традиционной форме.

И они работают весьма хорошо. Достаточно хорошо, чтобы пройти через большие объёмы устаревших математических обозначений, определённых, скажем, в TEX, и автоматически и однозначно сконвертировать их в осмысленные данные в Mathematica.

И эта возможность весьма вдохновляет. Потому что для того же устаревшего текста на естественном языке нет никакого способа сконвертировать его во что-то значимое. Однако в математике есть такая возможность. Конечно, есть некоторые вещи, связанные с математикой, в основном на стороне выхода, с которыми существенно больше сложностей, чем с обычным текстом. Часть проблемы в том, что от математики часто ожидают автоматической работы.

Нельзя автоматически сгенерировать много текста, который будет достаточно осмысленным. Однако в математике производятся вычисления, которые могут выдавать большие выражения. Так что вам нужно придумывать, как разбивать выражение по строкам так, чтобы всё выглядело достаточно аккуратно, и в Mathematica мы хорошо поработали над этой задачей.

И с ней связано несколько интересных вопросов, как, например, то, что во время редактирования выражения оптимальное разбиение на строки постоянно может меняться по ходу работы. И это значит, что будут возникать такие противные моменты, как если вы печатаете, и вдруг курсор перескакивает. Что ж, эту проблему, полагаю, мы решили довольно изящным образом. Была забавная анимация, которая появляется на мгновение, когда курсор должен передвинуться.

Возможно, вы её заметили. Однако если бы вы печатали, вы бы, вероятно, и не заметили бы, что курсор передвинулся назад, хотя вы могли бы её и заметить, потому что эта анимация заставляет ваши глаза автоматически посмотреть на это место. С точки зрения физиологии, полагаю, это работает за счёт нервных импульсов, которые поступают не в зрительную кору, а прямо в мозговой ствол, который контролирует движения глаз.

Итак, эта анимация заставляет вас подсознательно переместить свой взор в нужное место. Таким образом, мы смогли найти способ интерпретировать стандартную математическую нотацию. Означает ли это, что теперь вся работа в Mathematica должна теперь проводиться в рамках традиционных математических обозначений? Должны ли мы ввести специальные символы для всех представленных операций в Mathematica?

Таким образом можно получить весьма компактную нотацию. Но насколько это разумно? Будет ли это читаемо? Пожалуй, ответом будет. Думаю, тут сокрыт фундаментальный принцип: А кому-то не нужны специальные обозначения. А кто-то пользуется в Mathematica FullForm.

Однако с этой формой весьма утомительно работать. Другая возможность заключается в том, что всему можно присвоить специальные обозначения. Получится что-то наподобие APL или каких-то фрагментов математической логики. Вот другой пример из оригинальной статьи Тьюринга, в которой содержатся обозначения для универсальной машины Тьюринга, опять-таки — пример не самой лучшей нотации. Она тоже относительно нечитабельная. Думаю, эта проблема очень близка к той, что возникала при использовании очень коротких имён для команд.

Ранние версии Unix весьма здорово смотрелись, когда там было небольшое количество коротких для набора команд. И через какое-то время было уже большое количество команд, состоящих из небольшого количества символов. И большинство простых смертных не смогли бы их запомнить. И всё стало выглядеть совершенно непонятным. Та же ситуация, что и с математической или другой нотацией, если на то пошло.

Люди могут работать лишь с небольшим количеством специальных форм и символов. Возможно, с несколькими десятками. Соизмеримым с длиной алфавита. А если дать им больше, особенно все и сразу, в голове у них будет полная неразбериха. Это следует немного конкретизировать. Вот, к примеру, множество различных операторов отношений. Но большинство из них по сути состоят из небольшого количества элементов, так что с ними проблем быть не. Конечно, принципиально люди могут выучить очень большое количество символов.

Потому что в языках наподобие китайского или японского имеются тысячи иероглифов. Однако людям требуется несколько дополнительных лет для обучения чтению на этих языках в сравнении с теми, которые используют обычный алфавит. Если говорить о символах, кстати, полагаю, что людям гораздо легче справится с какими-то новыми символами в качестве переменных, нежели в качестве операторов.

И весьма занятно рассмотреть этот вопрос с точки зрения истории. Один из наиболее любопытных моментов — во все времена и практически без исключения в качестве переменных использовались лишь латинские и греческие символы.

Ну, Кантор ввёл алеф, взятый из иврита, для своих кардинальных чисел бесконечных множеств. И некоторые люди утверждают, что символ частной производной — русская д, хотя я думаю, что на самом деле это не. Однако нет никаких других символов, которые были бы заимствованы из других языков и получили бы распространение.

Кстати, наверняка вам известно, что в английском языке буква "e" — самая популярная, затем идёт "t", ну и так далее. И мне стало любопытно, каково распределение по частоте использования букв в математике. Потому я исследовал сайт MathWorldв котором содержится большое количество математической информации — более 13 записей, и посмотрел, каково распределение для различных букв [к сожалению, эту картинку, сделанную Стивеном, не удалось осовременить — прим. Можно увидеть, что "e" — самая популярная.

И весьма странно, что "a" занимает второе место. Я немного рассказал об обозначениях, которые в принципе можно использовать в математике. Так какая нотация лучше всего подходит для использования? Большинство людей, использующих математическую нотацию, наверняка задавались этим вопросом. Однако для математики нет никакого аналога, подобного "Современному использованию английского языка" Фаулера для английского языка.

Была небольшая книжка под названием Математика в печати, изданная AMS, однако она в основном о типографских приёмах. В результате мы не имеем хорошо расписанных принципов, аналогичным вещам наподобие инфинитивов с отдельными частицами в английском языке. Если вы используете StandardForm в Mathematica, вам это больше не потребуется. Потому что всё, что вы введёте, будет однозначно интерпретировано. Однако для TraditionalForm следует придерживаться некоторых принципов. К примеру, не писатьпотому что не совсем ясно, что это означает.

Будущее Чтобы закончить, позвольте мне рассказать немного о будущем математической нотации. Какой, к примеру, должна бы быть новая нотация? В какой-нибудь книге символов будет содержаться около символов, популярных в тех или иных областях и не являющимися буквами языков. И с правильным написанием символов, многие из них могли бы идеально сочетаться с математическими символами. Для чего же их использовать? Первая приходящая на ум возможность — нотация для представления программ и математических операций.

В Mathematica, к примеру, представлено довольно много текстовых операторов, используемых в программах. И я долгое время считал, что было бы здорово иметь возможность использовать для них какие-то специальные символы вместо комбинаций обычных символов ASCII [последние версии Mathematica полностью поддерживают Unicode — прим. Оказывается, иногда это можно реализовать весьма.

Поскольку мы выбрали символы ASCII, то часто можно получить некоторые символы, очень близкие по написанию, но более изящные. И это всё реализуемо за счёт того, что парсер в Mathematica может работать в том числе и со специальными символами. Я часто размышлял о том, как бы расширить всё. И вот, постепенно появляются новые идеи. Обратите внимание на знак решёткиили номерной знак, или, как его ещё иногда называют, октоторп, который мы используем в тех местах, в которые передаётся параметр чистой функции.

Он напоминает квадрат с щупальцами. И в будущем, возможно, он будет обозначаться симпатичным квадратиком с маленькими засечками, и будет означать место для передачи параметра в функцию.

каким знаком можно обозначить историю

И он будет более гладким, не похожим на фрагмент обычного кода, чем-то вроде пиктограммы. Насколько далеко можно зайти в этом направлении — представлении вещей в визуальной форме или в виде пиктограмм? Ясно, что такие вещи, как блок-схемы в инженерии, коммутативные диаграммы в чистой математике, технологические схемы — все хорошо справляются со своими задачами.

По крайней мере до настоящего момента. Но как долго это может продолжаться? Не думаю, что уж очень долго. Думаю, некоторые приближаются к некоторым фундаментальным ограничениям людей в обработке лингвистической информации. Когда языки более или менее контекстно-свободные, имеют древовидную структуру, с ними можно многое сделать.

Наша буферная память из пяти элементов памяти и что бы то ни было спокойно сможет их разобрать. Конечно, если у нас будет слишком много вспомогательных предложений даже на контекстно-свободном языке, то будет вероятность исчерпать стековое пространство и попасть впросак. Но, если стек не будет заходить слишком глубоко, то всё будет работать как. Но что насчёт сетей? Можем ли мы понимать произвольные сети? Я имею в виду — почему у нас должны быть только префиксные, инфиксные, оверфиксные операторы?

Почему бы операторам не получать свои аргументы через какие-то связи внутри сети? Меня особенно интересовал этот вопрос в контексте того, что я занимался некоторыми научными вопросами касательно сетей.

И мне действительно хотелось бы получить некоторое языковое представление для сетей. Но не смотря на то, что я уделил этому вопросу довольно много времени — не думаю, что мой мозг смог бы работать с подобными сетями так же, как с обычными языковыми или математическими конструкциями, имеющими одномерную или двумерную контекстно-свободную структуру. Так что я думаю, что это, возможно, то место, до которого нотация не сможет добраться.

Вообще, как я упоминал выше, это частый случай, когда язык или нотация ограничивают наше пространство мыслимого. Итак, что это значит для математики? В своём научном проекте я разрабатывал некоторые основные обобщения того, что люди обычно относят к математике. И вопрос в том, какие обозначения могут быть использованы для абстрактного представления подобных вещей. Что ж, я не смог пока что полностью ответить на этот вопрос. Однако я обнаружил, что, по крайней мере в большинстве случаев, графическое представление или представление в виде пиктограмм гораздо эффективнее обозначений в виде конструкций на обычных языках.

Возвращаясь к самому началу этого разговора, ситуация напоминает то, что происходило тысячи лет в геометрии. В геометрии мы знаем, как представить что-то в графическом виде. Ещё со времён древнего Вавилона. И чуть более ста лет назад стало ясно, как можно формулировать геометрические задачи с точки зрения алгебры.

Однако мы всё ещё не знаем простого и ясного способа представлять геометрические схемы в обозначениях на естественном языке.

каким знаком можно обозначить историю

И моя догадка состоит в том, что практически все эти математические вещи лишь в небольшом количестве могут быть представлены в обозначениях на естественном языке. Однако мы — люди — легко воспринимаем лишь эти обозначения на естественном языке. Так что мы склонны изучать те вещи, которые могут быть представлены этим способом. Конечно, подобные вещи не могут быть тем, что происходит в природе и вселенной.

Но это уже совсем другая история. Так что я лучше закончу на. Примечания В ходе обсуждения после выступления и во время общения с другими людьми на конференции возникло несколько моментов, которые следовало бы обсудить.

Эмпирические законы для математических обозначений При изучении обычного естественного языка были обнаружены различные историко-эмпирические законы.

Пример — Закон Гриммакоторые описывает переносы в согласных на индоевропейских языках. Мне было любопытно, можно ли найти подобные историко-эмпирические законы для математического обозначения. Дана Скотт предложила такой вариант: Как пример, в 60 годах 19 века часто каждый компонент вектора именовался отдельно.

Но затем компоненты стали помечать индексами — как ai. И вскоре после этого — в основном после работ Гиббса — векторы стали представлять как один объект, обозначаемый, скажем, как или a. С тензорами всё не так. Нотацию, избегающую явных индексов, обычно называют координатно-свободной. И подобная нотация — частое явление в чистой математике. Однако в физике данный подход считается слишком абстрактным, потому явные индексы используются повсеместно. В отношении функций так же имеется тенденция явно не упоминать параметры.

В чистой математике, когда функции рассматриваются через сопоставления, они часто упоминаются лишь по своему имени — просто f, без каких-либо параметров.

Однако это будет хорошо только тогда, когда у функции только один параметр. Когда параметров несколько, обычно становится непонятно, как будут работать те потоки данных, которые ассоциированы с параметрами.

Однако, ещё в х годах 20 века было показано, что можно использовать так называемые комбинаторы для определения подобных потоков данных без какого-либо явного указания параметров. Комбинаторы не использовались в основных течениях математики, однако время от времени становились популярными в теории вычислений, хотя их популярность заметно поубавилась из-за несовместимости с идеей о типах данных.

Комбинаторы довольно легко задать в Mathematica через задание функции с составным заголовком. Вот как можно определить стандартные комбинаторы: Никакие переменные не требуются.

Проблема заключается в том, что выражения получаются непонятными, и с этим ничего не поделать. Я пытался найти какие-то способы для более ясного представления их и сопряжённых с ними вычислений. Я добился небольшого прогресса, однако нельзя сказать, что задача была решена. Печатные обозначения против экранных Некоторые спрашивали о разнице в возможностях печатных и экранных обозначений. Чтобы можно было понимать обозначения, они должны быть похожими, и разница между ними не должна быть очень большой.

Но есть некоторые очевидные возможности. Во-первых, на экране легко можно использовать цвет. Можно было бы подумать, что было каким-то образом удобно использовать разные цвета для переменных. Мой опыт говорит о том, что это удобно для разъяснения формулы. Однако всё станет весьма запутанным, если, к примеру, красному x и зелёному x будут соответствовать разные переменные. Другая возможность состоит в том, чтобы иметь в формуле какие-то анимированные элементы.

Полагаю, что они будут столь же раздражающими, как и мигающий текст, и не будут особо полезными. Пожалуй, идея получше — иметь возможность скрывать и разворачивать определённые части выражения — как группы ячеек в ноутбуке Mathematica. Тогда будет возможность сразу получить представление обо всём выражении, а если интересны детали, то разворачивать его далее и далее.

Письменные обозначения Некоторые могли бы подумать, что я уж слишком много времени уделил графическим обозначениям. Хотелось бы прояснить, что я нахожу довольно затруднительным графические обозначения обычных математических действий и операций. В своей книге A New Kind of Science я повсеместно использую графику, и мне не представляется никакого другого способа делать то, что я делаю. И в традиционной науке, и в математике есть множество графических обозначений, которые прекрасно работают, пускай и в основном для статичных конструкций.

Теория графов — очевидный пример использования графического представления. К ним близки структурные диаграммы из химии и диаграммы Фейнмана из физики. В математике имеются методы для групповых теоретических вычислений, представленные отчасти благодаря Предрагу Цвитановицу, и вот они основаны на графическом обозначении.

И в лингвистике, к примеру, распространены диаграммы для предложений, показывающие дерево лингвистических компонентов и способы их группировки для образования предложения.

Все эти обозначения, однако, становятся малопригодными в случаях исследования каких-то очень крупных объектов. Однако в диаграммах Фейнмана обычно используется две петли, а пять петель — максимум, для которого когда-либо были сделаны явные общие вычисления. Шрифты и символы Я обещал рассказать кое-что о символах и шрифтах. В Mathematica 3 нам пришлось проделать большую работу чтобы разработать шрифты для более чем символов, имеющих отношение к математической и технической нотации.

Получение правильной формы — даже для греческих букв — часто было достаточно сложным. С одной стороны, мы хотели сохранить некоторую традиционность в написании, а с другой — сделать греческие буквы максимально непохожими на английские и какие бы то ни было. В конце концов я сделал эскизы для большинства символов. Вот к чему мы пришли для греческих букв. Мы разработали Times-подобный шрифт, моноширинный наподобие Courier, а сейчас разрабатываем sans serif. Разработать шрифт Courier было непростой задачей.

Нужно, к примеру, было придумать, как сделать так, чтобы йота занимала весь слот под символ. Так же сложности были со скриптовыми и готическими фактурными шрифтами. Часто в этих шрифтах буквы настолько непохожи на обычные английские, что становятся абсолютно нечитаемыми. Мы хотели, чтобы эти шрифты вписывались в соответствующую им тему, и, тем не менее, обладали бы теми же габаритами, что и обычные английские буквы.

Вот, что у нас получилось: Поиск математических формул Некоторые люди спрашивали о поиске математических формул [после создания Wolfram Alpha появился гигантский объем баз данных, доступных в языке Wolfram Language, теперь можно получить огромный массив информации о любых формулах с помощью функции MathematicalFunctionData — прим.

Очевидно легко сказать, что же такое поиск обычного текста. Единственная вопрос заключается в эквивалентности строчных и прописных букв. Для математических формул всё сложнее, потому что есть ещё много различных эквивалентностей. Если спрашивать о всех возможных эквивалентностях, то всё станет слишком сложным. Но, если спросить об эквивалентностях, которые просто подразумевают замену одной переменной другой, то всегда можно определить, эквивалентны ли два выражения.

Однако, для этого потребуется мощь обнаружителя одинаковых паттернов Mathematica. Мы планируем встроить возможности по поиску формул в наш сайт functions.

Невизуальные обозначения Кто-то спрашивал о невизуальных обозначениях. Первая мысль, которая у меня возникла, заключалась в том, что человеческое зрение даёт гораздо больше информации, чем, скажем, слух. В конце концов, с нашими глазами соединён миллион нервных окончаний, а с ушами лишь 50 В Mathematica встроены возможности по генерации звуков начиная со второй версии, которая была выпущена в году. И были некоторые моменты, когда эта функция оказывалась полезной для понимания каких-то данных.

Однако я никогда не находил подобную функцию полезной для чего-то, связанного с обозначениями. Доказательства Кто-то спрашивал о представлении доказательств. Самая большая проблема заключается в представлении длинных доказательств, которые были автоматически найдены с помощью компьютера. Большое количество работы было проделано для представления доказательств в Mathematica. Примером является проект Theorema. Самые сложные для представления доказательства — скажем, в логике — представляют из себя некоторую последовательность преобразований.

Вот пример такого доказательства: Замечание a b есть Nand[a,b]. Отбор символов Я хотел бы кое-что рассказать о выборе символов для использования в математической нотации. Существует около часто используемых символов, которые не встречаются в обычном тексте. Некоторые из них слишком картинны — скажем, обозначение для хрупких предметов. Некоторые полны чёрной заливки, так что они будут слишком сильно выделяться на странице символ радиации, например.

Но некоторые могут быть вполне приемлемыми. Если заглянуть в историю, часто можно наблюдать картину, как со временем написание некоторых символов упрощается.